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Abstract The interest in attractive Bose–Einstein Condensates arises due to the
chemical instabilities generate when the number of trapped atoms is above a criti-
cal number. In this case, recombination process promotes the collapse of the cloud.
This behavior is normally geometry dependent. Within the context of the mean field
approximation, the system is described by the Gross–Pitaevskii equation. We have
considered the attractive Bose–Einstein condensate, confined in a nonspherical trap,
investigating numerically and analytically the solutions, using controlled perturbation
and self-similar approximation methods. This approximation is valid in all interval of
the negative coupling parameter allowing interpolation between weak-coupling and
strong-coupling limits. When using the self-similar approximation methods, accurate
analytical formulas were derived. These obtained expressions are discussed for several
different traps and may contribute to the understanding of experimental observations.

Keywords Bose–Einstein condensation · Negative coupling parameter

1 Introduction

Cold atomic interactions occupy a strategic position, contributing for many fields
involved in chemical physics, atomic and molecular physics and even in condensed
matter. Being in the intersection of many subjects, it presents a wide interest and
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a tremendous growth of interest. For many years, a great deal of research was
devoted to the field of cold collisions [1]. With the advent of controlled Bose-
Condensation, the interest moves many orders of magnitude down in tempera-
ture, reaching the domain where a full quantum description is necessary. In that
case, a renewing interest of the chemistry of ultra-low temperatures experienced
a revival. During the occurrence of Bose–Einstein condensation, the dissipative
process like three body recombination, are dominated by the sign of the effec-
tive interaction represented by the magnitude and sign of the quantity “scatter-
ing length”. In the presence of interaction, a confined collection of bosons that
undergo Bose-Condensation has many of the properties modified. The peculiar
properties associated with the occurrence of Bose-condensation revels many unre-
solved mathematical problems and renewed flurry of interest in those questions.
The subject is largely quiescent due to the developing of experiments that pro-
vides feedback for theories and approximations. Among the topics of interest is
the case of Bose–Einstein condensation of trapped atomic gases with attractive
interactions. The system is normally described by the Gross–Pitaevskii Equation
(GPE) [2–4] and was realized in ultracold vapors of 7Li by Bradley et al. [5],
opening a new field in the study of macroscopic quantum phenomena. The inter-
est in this case arises due to the chemical instability associated with the nega-
tive interaction in the quantum cloud of atoms. The knowledge of the spectrum
of the trapped cloud is, in this case, fundamental to understand the spatial dis-
tribution and the macroscopic behavior associated with collapse of the conden-
sate. Within the mean field approximation, the system presents modification of
the overall allowed energies of the occupying potential. In describing the sys-
tem within the GPE, there is a competition involving the nonlinear term due to
the contact interaction and the remaining energy terms. This competition, for the
case of negative scattering length, is what determines the observed instabilities.
The overall behavior of those instabilities is sensitive to the spatial distribution
of the cloud, and therefore is dependent on the trap geometry, generating inter-
est for the possible calculation of the gas spectrum in different geometries of
atomic traps. The nonlinear GPE has no exact solution and for practical appli-
cations one needs to resort to some approximations, for example: the Gauss-
ian and Thomas-Fermi approximations. The mathematical structure of the GPE
is of nonlinear Schrödinger equation. The stationary states, due to the confine-
ment caused by trapping potential, possess discrete energy levels. These stationary
eigenstates form a set of solutions that can be called nonlinear coherent modes,
analogue to linear modes that are solutions of a linear Schrödinger equation. So,
the wave function of the GPE corresponds to a coherent state of Bose condensed
atoms. The properties of these modes have been calculated theoretically in sev-
eral publications [6–11] and a nonlinear dipole mode was observed experimen-
tally [12]. In particular interest is the comparison of precision when different
methods are employed in the evaluation of the GPE equation for specific geome-
tries.

The aim of the present paper is to calculate a numerical approximate solution to
the GPE with cylindrical symmetry and an analytical approximate solution to this
same equation, such that the coupling parameter has negative value, since the positive
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coupling parameter has been already solved by Yukalov [13–15]. Here we will yield
asymptotically exact solutions in both limits of weak as well as strong coupling using
negative values of the coupling parameter.

2 Cylindrical model

Atomic interactions for dilute trapped gases are well described by the Fermi contact
potential because the ultra low energies make the interaction shape independent. The
interatomic potential is therefore given by:

�(r) = Aδ(r), A ≡ 4π h̄2 as

m0
, (1)

where as is the s-wave scattering length, m0 is the atomic mass and A is the interaction
parameter for the external confining potential. When we consider a harmonic trap as

U (r) = m0

2

(
ω2

x x2 + ω2
y y2 + ω2

z z2
)

, (2)

the quantum description of the trapped atoms is in the GPE, which for a system of N
particles can be written as

∧
H (ϕ) = − h̄2∇2

2m0
+ U (r) + N A |ϕ|2 , (3)

where A is the interaction parameter and U (r) the confining potential.
Here we shall consider a harmonic potential of cylindrical symmetry with radial

frequency

ωr ≡ ωx = ωy

and axial frequency, ωz , such that the anisotropy parameter, λ, and oscillator length,
lr , are defined as

λ ≡ ωz

ωr
, lr ≡

√
h̄

m0ωr
. (4)

The coupling parameter is defined as

g ≡ 4π
as

lr
N (5)

The nonlinear eigenproblem for the Hamiltonian of Eq. 3 cannot be solved exactly.
The standard perturbation theory starting with a harmonic-oscillator approximation
cannot be employed if arbitrary amplitude of the coupling parameter defined in Eq. 5
is considered. It is possible to find accurate approximate expressions for the whole
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spectrum for arbitrary values of the coupling parameter by means of the controlled
perturbation theory [16–19].

3 Cylindric confining potential

To calculate the spectrum of the equation
∧
H �n = En�n we may employ the con-

trolled perturbation theory [20], and we can start with the initial Hamiltonian of a
harmonic oscillator

∧
H0 = −1

2
∇2 + 1

2

(
u2r2 + v2z2

)
(6)

having two trial parameters, u and v [15]. Then, the eigenvalues of the operator in
Eq. 6 are determined through

E (0)
nmk = (2n + |m| + 1) u +

(
k + 1

2

)
v, (7)

where the radial quantum number n = 0, 1, 2, . . ., the azimuthal number m =
0,±1,±2, . . ., and the axial quantum number k = 0, 1, 2, . . .. The corresponding
eigenfunctions are

�
(0)
nmk (r, ϕ, z) =

[
2n!u|m|+1

(n + |m|)!
]1/2

r |m| exp

(
−1

2
ur2
)

L |m|
n

(
ur2
)

× eimϕ

√
2π

(v/π)1/4

√
2kk! exp

(
−1

2
vz2
)

Hk
(√

vz
)

where Lm
n (·) are the Laguerre polynomials and Hk (·) are a Hermite polynomial.

In first order, we have

E (1)
nmk (g, u, v) =

(
�

(0)
nmk,

∧
H �

(0)
nmk

)
. (8)

To write down this integral explicitly, it is convenient to use the notation

Inmk ≡ 1

u
√

v

∫ ∣∣∣�(0)
nmk (�r)

∣∣∣
4
d�r .

We can also introduce the follow combinations

p ≡ 2n + |m| + 1, q ≡ 2k + 1. (9)

Then, using the Rayleigh-Schrödinger perturbation theory, we may find a sequence
{Ek (g, u, v)} of approximation orders k = 0, 1, 2, . . . , for the spectrum.
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This way, the energy levels in Eq. 8 can be written as

E (1) (g, u, v) = p

2

(
u + 1

u

)
+ q

4

(
v + λ2

v

)
− 1

2

su
√

λ

νp
√

q
. (10)

The fixed-point conditions are, therefore, obtained from the conditions

∂

∂u
E (1) (g, u, v) = 0,

∂

∂v
E (1) (g, u, v) = 0. (11)

Using Eq. 10 one will have

p

(
1 − 1

u2

)
− s

pλ

√
v

q
= 0 and q

(
1 − λ2

v2

)
− s

pλ
√

λq
= 0 (12)

for the control frequencies u = u (g) and v = v (g), where the notation

s ≡ −2p
√

q Inmkλg (13)

is used. Substituting these control functions into Eq. 10, we obtain the controlled
approximant

E(s) ≡ E (1) [g(s), u(s), v(s)] . (14)

Now, we can analyze the weak-coupling and strong-coupling limits in detail. In the
weak-coupling limit (s very small), Eq. 12 gives the radial control function

u(s) ≈ −1 − s

2
√

qλp2
+ s2

8q2λ2 p3 − 3s2

8qλp4 + s3

4q2λ2
√−qλp5

+ 5s3

16qλ
√−qλp6

+ 3s3

64q3λ3
√−qλp4

(15)

and, respectively, the axial control function

v(s) ≈ λ − s

2pq
√−qλ

+ s2

4q3λ2 p2 + s2

4q2λp3 − 3s3

16q2λp5
√−qλ

+ 5s3

16q3λ2 p4
√−qλ

− 7s3

64q4λ3 p3
√−qλ

(16)

In the strong-coupling limit (s very large), the radial control function is

u(s) ≈ ps−2/5 + p
(
λ2q2 − 3p2

)

5
s−6/5 − p

(−λ4q4 − λ2q2 p2 + 3p4
)

5
s−2 (17)
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and for the axial control function we get

v(s) ≈ λ2qs−2/5 +
(

−4qλ2
(+λ2q2 − 3p2

)

5
− 2p2qλ2

)
s−6/5

+

⎛
⎜⎜⎜⎜⎜⎜⎝

p4qλ2

⎛
⎜⎜⎝

2

(
2(+6λ4q4−λ2q2 p2−6p4)

25p2 + (+λ2q2−3p2)
2

25p2

)

p2 + 4
(+λ2q2−3p2

)2
25p4

⎞
⎟⎟⎠

+qλ2
(

p4 + 4p2
(+λ2q2−3p2

)
5

)
+ 8p2qλ2

(−λ2q2+3p2
)

5

⎞
⎟⎟⎟⎟⎟⎟⎠

s−2

(18)

Finally, for the weak-coupling limit, the energy in Eq. 14 becomes

E(s) ≈
(

−p + 1

2
qλ

)
+ 1

2
√

λp
√

q
s

+

⎛
⎜⎜⎜⎜⎝

− 1
8p3qλ

+ 1
4 q

⎛
⎝

1
4q3λ2 p2

+−λ
(

1
4q3λ2 p2 − 1

4q2λp3

)
+ 1

4p2q3λ

λ
− 1

4q2λp3

⎞
⎠

−− 2
λ3/2 pq3/2 + 4

√
λ√

qλp2

16λp
√

q

⎞
⎟⎟⎟⎟⎠

s2

(19)

and for the strong-coupling limit we find

E(s) ≈
(

3

4
−
√

qλ2

2λ
√

q

)
s2/5 +

(
p2

2
+ q2λ2

4

)
s−2/5. (20)

In the limit s → −∞ [20], we obtain the energy

E(s) ≈
− 3(−1)3/5

4 + (−1)2/5
√

λ2q(−1)2/5

2λ
√

q(− 1
s

)2/5
+
(

p2 (−1)2/5

2
+ λ2q2 (−1)2/5

4

)
− s2/5

(21)

4 Cylindrical traps

Now we calculate the root approximants using the negative value of the effective inter-
action strength in Eq. 13, interpolating the weak-coupling in Eq. 19 and the strong-
coupling in Eq. 20 of the spectrum and then we employ the self-similar approximation
method, which was developed by Yukalov [21], and obtain

E∗
k(s) = a0

((
· · · (1 + Ak1s)nk1 + Ak2s2

)nk2 + · · · Akksk
)nkk

. (22)
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Fig. 1 Percentage errors of the self-similar approximants as functions of the coupling parameter g,
in a cigar-shape trap, with λ = 0.1. E∗

1 (solid line), E∗
2 (point line), and E∗

3 (patch line) are related with
different quantum numbers: a n = m = k = 0; b n = k = 0, m = 2; c n = k = 0, m = 10

Depending on the approximation order k = 1, 2, . . . , in the first order, we have

E∗
1(s) = a0 (1 + As)2/5 (23)

where

a0 =
(

−p + 1

2
qλ

)
, A2/5 = 0.25

a0
.

In the second order

E∗
2(s) = a0

[
(1 + A1s)6/5 + A2s2

]1/5
(24)
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Fig. 2 Percentage errors of the self-similar approximants as functions of the coupling parameter g, in
a spherical-shape trap, with λ = 1. E∗

1 (solid line), E∗
2 (point line), and E∗

3 (patch line) are related with
different quantum numbers: a n = m = k = 0; b n = k = 0, m = 2; c n = k = 0, m = 10

with same a0 and with

A1 = (0.25)25/6

a25/6
0

[
20

(
p2

2
+ (qλ)2

4

)]5/6

, A1/5
2 = 0.25

a0
.

In the third order we obtain

E∗
3(s) = a0

{[
(1 + B1)

6/5 + B2s2
]11/10 + B3s3

}2/15

(25)
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Fig. 3 Percentage errors of the self-similar approximants as functions of the coupling parameter g, in
a pancake-shape trap, with λ = 10. E∗

1 (solid line), E∗
2 (point line), and E∗

3 (patch line) are related with
different energy levels: a n = m = k = 0; b n = k = 0, m = 2; c n = k = 0, m = 10

where

B1 = (0.25)125/22

a125/22
0

[
30

(
p2

2
+ (qλ)2

4

)]5/66

×
⎡
⎢⎣−3p4 + 2p2 (qλ)2 − 2 (qλ)4

20
11
10

(
p2
2 + (qλ)2

4

)
− 130

44

⎛
⎝
(

p2

2 + (qλ)2

4

)

0.25

⎞
⎠
⎤
⎥⎦

5/6

B2 =
(

0.25

a0

)75/11
[

30

(
p2

2
+ (qλ)2

4

)]10/11

, B3 =
(

0.25

a0

)15/2

.

Now, we can analyze graphically the accuracy of the self-similar root approximants
E∗

k(s) as function of the coupling parameter g and using the negative effective inter-
action strength s.

Now we calculate the percentage errors ε∗
k (s) comparing E∗

k(s) with the controlled
approximant in Eq. 14. We have calculated the maximal errors ε∗

k ≡ maxsε
∗
k (s) for
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the anisotropy parameter λ, defined in Eq. 4, in the range 0.1 ≤ λ ≤ 2000 for
the ground state and for some excited states. For example, for the ground state with
n = m = k = 0 and for λ = 1 we have obtained

ε∗
1 = 4.1%, ε∗

2 = 2.1% and ε∗
3 = 1.1%.

which demonstrates good convergence. In the case of a cigar shape trap with λ = 0.1,
we have obtained

ε∗
1 = 9%, ε∗

2 = 3.8% and ε∗
3 = 1.9%.

For a pancake shape trap with λ = 10, we have attained

ε∗
1 = 12.4%, ε∗

2 = 3.5% and ε∗
3 = 1.9%.

The same good convergence occurs for the excited states with different quantum
numbers and for several anisotropy parameters. We showed in Figs. 1, 2 and 3 the per-
centage errors E∗

1, E∗
2 and E∗

3 for several levels and different anisotropy parameters.
So, the crossover approximants, E∗

k , as functions of the negative coupling parameter,
g, are analyzed with more details and precisions.

5 Conclusions

With the controlled perturbation theory method [22], we have found approximate solu-
tions for the spectrum of the cylindrically trapped Bose gas and with influence of the
negative values of the coupling parameter. Analytical expressions for the spectrum of
the level energies using the negative coupling parameter were obtained by employing
the self-similar root approximant method.

The approximations obtained by employing these two methods provided the best
accuracy for all negative couplings, g, for the limits of weak and strong couplings of
the corresponding asymptotically exact solutions.
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